

OBJECTIVE

Finding a way to measure enthalpy down hole.

6/27/2008

OBJECTIVE

Finding a way to measure enthalpy down hole.

Down hole enthalpy measurements useful for:

- Fracture characterization
- Reservoir modeling
- Validating results from wellbore simulators
- Earlier estimates of power produced by a well

PARAMETERS NEEDED for DOWNHOLE ENTHALPY MEASUREMENT

Flowing enthalpy:
$$h_{flowing} = \frac{W_w h_w + W_s h_s}{W_w + W_s}$$

Mass flow rate:

Volumetric flow rate of each phase:

$$q_{gas} = u_{gas} * A * \alpha$$

$$q_{liquid} = u_{liquid} * A * (1 - \alpha)$$

$$h_{flowing} = \frac{\left[u_{w}^{*}(1-\alpha)*\rho_{w}*h_{w}\right] + \left[u_{s}*\alpha*\rho_{s}*h_{s}\right]}{u_{w}*(1-\alpha)*\rho_{w}+u_{s}*\alpha*\rho_{s}}$$

 $W = q * \rho$

Void fraction

FIBER OPTICS FOR PHASE DETECTION

The working principle of most fiber optic probes is based on the Snell-Descartes refraction law:

 n_2

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Liquid-gas interfaces passing by the tip of the probe cause the system to change from a refraction state to a total reflection state.

THE NORMAL REFLECTION PROBE

╢

SCHEMATIC OF EXPERIMENTAL APPARATUS

6/27/2008

COMPARISON MEASUREMENT

- The FFRD technique was used for correlation during the void fraction measurement experiments.
- The phototransistor inside the FFRD produces different voltages when sensing different strengths of light.

Fractional Flow Ratio Detector

(Chen et al. 2004)

LOCAL VOID FRACTION CALCULATION

In our study void fraction is defined as the direct measurement of the relative time the dispersed phase is present at the measuring point.

6/27/2008

DISPERSED PHASE VELOCITY MEASUREMENT

6/27/2008

DIFFERING STRIKE LOCATIONS

EXPERIMENTAL RESULTS

	Average void fraction	Average void fraction	Ratio between resistivit
Air injection pressure (psi)	from resistivity sensor (%)		

CONCLUSION

- Normal cut fiber optic probe can be used to measure local void fraction and dispersed phase velocity, which are essential factors to determine enthalpy downhole.
- A good correlation between the FFRD and fiber-derived estimates of void fraction was obtained for (slow) water-air bubble flow and (fast and slow) water-steam flow.
- For slow water-air flow a good correlation was obtained between the dual optical probe and the camera-inferred velocities. The fiber optic probe also appeared to be working well in fast water-air flows, however we did not have a successful secondary measurement to confirm this.
- In the model wellbore, the fiber-inferred void fractions were correlated with those from resistivity measurements.

ACKNOWLEDGEMENTS

- We are grateful for funding through Idaho National Lab.
- Thanks also to Stanford University for support of undergraduate research.

QUESTION & ANSWER

FIBER PROBE DESIGN for DOWNHOLE

